网络消费网 >  5G > > 正文
功率MOSFET雪崩击穿问题分析
时间:2021-12-08 06:22:05

本文引用地址:http://www.eepw.com.cn/article/179394.htm

M的经验表达式为

M=1/[1-(Vd/BV)n](7)

式中:BV为漏极同p-基极间电压;

n为常数。

由式(4)及式(7)可得

1+γRb+(8a)

(8b)

1-=(1+γRb)(8c)

在“快回”点,由式(8a)和式(8b)得

Id,SBIdo=(1+γRb)Ib,SB=+0.6γ(9)

由式(6)及式(7)得

Vd,SB=BV[1+Rb(γIdo/0.6)]-1/n(10a)

Vd,SB=BV[0.6/RbId,SB]1/n(10b)

由式(10b)得

ID,SB=Ic,SBId,SB=Ic,SB+=Ic,SBIb,SB(11)

式(11)说明,ID,SBMOSFET漏极寄生三极管集电极在二次击穿时的电流的总和。式(10a)表明,雪崩击穿电压随着IdoRb增大而减小。式(10b)则给出了雪崩击穿的边界电压。

大量的研究和试验表明,Ic,SB很小。另外,由于寄生三极管的增益较大,故在雪崩击穿时,三极管基极电子、空穴重新结合所形成的电流,以及从三极管集电极到发射极空穴移动所形成的电流,只占了MOSFET漏极电流的一小部分;所有的基极电流Ib流过Rb;当Ib使基极电位升高到一定程度时,寄生晶体管进入导通状态,MOSFET漏源极电压迅速下降,发生雪崩击穿故障。

3 功率MOSFET雪崩击穿的微观分析

双极性器件在发生二次击穿时,集电极电压会在故障瞬间很短时间内(可能小于1ns)衰减几百伏。这种电压锐减主要是由雪崩式注入引起的,主要原因在于:二次击穿时,器件内部电场很大,电流密度也比较大,两种因素同时存在,一起影响正常时的耗尽区固定电荷,使载流子发生雪崩式倍增。

对于不同的器件,发生雪崩式注入的情况是不同的。对于双极性晶体管,除了电场应力的原因外,正向偏置时器件的热不稳定性,也有可能使其电流密度达到雪崩式注入值。而对于MOSFET,由于是多数载流子器件,通常认为其不会发生正向偏置二次击穿,而在反向偏置时,只有电气方面的原因能使其电流密度达到雪崩注入值,而与热应力无关。以下对功率MOSFET的雪崩击穿作进一步的分析

如图1所示,在MOSFET内部各层间存在寄生二极管、晶体管(三极管)器件。从微观角度而言,这些寄生器件都是器件内部PN结间形成的等效器件,它们中的空穴、电子在高速开关过程中受各种因素的影响,会导致MOSFET的各种不同的表现。

导通时,正向电压大于门槛电压,电子由源极经体表反转层形成的沟道进入漏极,之后直接进入漏极节点;漏极寄生二极管的反向漏电流会在饱和区产生一个小的电流分量。而在稳态时,寄生二极管、晶体管的影响不大。

关断时,为使MOSFET体表反转层关断,应当去掉栅极电压或加反向电压。这时,沟道电流(漏极电流)开始减少,感性负载使漏极电压升高以维持漏极电流恒定。漏极电压升高,其电流由沟道电流和位移电流(漏极体二极管耗尽区生成的,且与dVDS/dt成比例)组成。漏极电压升高的比率与基极放电以及漏极耗尽区充电的比率有关;而后者是由漏-源极电容、漏极电流决定的。在忽略其它原因时,漏极电流越大电压会升高得越快。

如果没有外部钳位电路,漏极电压将持续升高,则漏极体二极管由于雪崩倍增产生载流子,而进入持续导通模式(Sustaining Mode)。此时,全部的漏极电流(此时即雪崩电流)流过体二极管,而沟道电流为零。

由上述分析可以看出,可能引起雪崩击穿的三种电流为漏电流、位移电流(即dVDS/dt电流)、雪崩电流,三者理论上都会激活寄生晶体管导通。寄生晶体管导通使MOSFET由高压小电流迅速过渡到低压大电流状态,从而发生雪崩击穿。

4 雪崩击穿时能量与温度的变化

在开关管雪崩击穿过程中,能量集中在功率器件各耗散层和沟道中,在寄生三极管激活导通发生二次击穿时,MOSFET会伴随急剧的发热现象,这是能量释放的表现。以下对雪崩击穿时能量耗散与温升的关系进行分析。

雪崩击穿时的耗散能量与温升的关系为

ΔθM∝(12)

雪崩击穿开始时,电流呈线性增长,增长率为

di/dt=VBR/L(13)

式中:VBR为雪崩击穿电压(假设为恒定);

L为漏极电路电感。

关键词: 问题 分析 击穿 雪崩 MOSFET 功率

版权声明:
    凡注明来网络消费网的作品,版权均属网络消费网所有,未经授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:网络消费网"。违反上述声明者,本网将追究其相关法律责任。
    除来源署名为网络消费网稿件外,其他所转载内容之原创性、真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考并自行核实。
热文

网站首页 |网站简介 | 关于我们 | 广告业务 | 投稿信箱
 

Copyright © 2000-2020 www.sosol.com.cn All Rights Reserved.
 

中国网络消费网 版权所有 未经书面授权 不得复制或建立镜像
 

联系邮箱:920 891 263@qq.com

备案号:京ICP备2022016840号-15

营业执照公示信息